

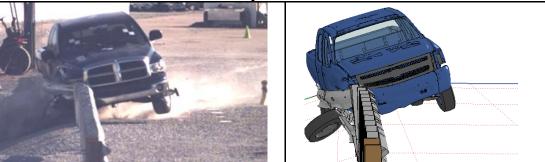
Verification and Validation of Models Used in Computer Simulations of Roadside Barrier Crashes

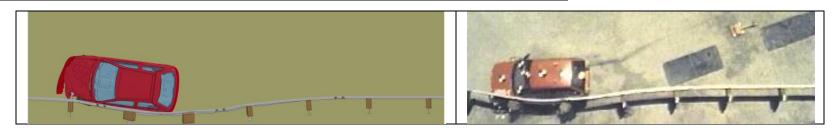
- Mongiardini^(a), Ray^(b), Grzebieta^(a) & Bambach^(a)
- ^(a) Transport And Road Safety (TARS) University of New South Wales
- ^(b) RoadSafe LLC Canton, ME USA

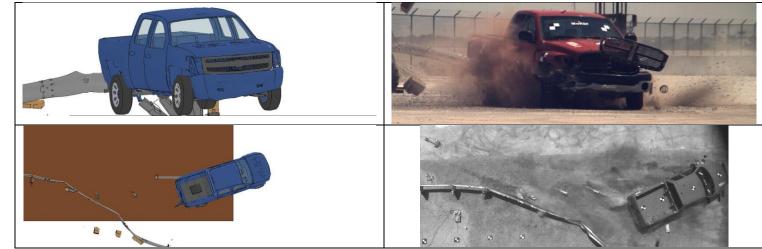
2013 Australasian Road Safety Research, Policing & Education Conference 28th – 30th August, Brisbane - Queensland

□ INTRODUCTION

□ V&V PROCEDURES IN ROADSIDE SAFETY


□ APPLICATION CASE





Computer Simulations for Barrier Crashes

□ Powerful tool to predict outcome of full-scale crash tests

Computer Simulations for Barrier Crashes

Powerful tool to predict outcome of full-scale crash tests

- Identify potential problems before testing
- > Optimise barrier performance
- Accept incremental design (w/o testing)

NTRODUCTION

Computer Simulations for Barrier Crashes

□ Powerful tool to predict outcome of full-scale crash tests

- Identify potential problems before testing
- > Optimise barrier performance
- Accept incremental design (w/o testing)

□ Need to reproduce reality under investigation

- No cartoons!
- Verification & Validation (V&V) guarantees realistic results

Verification & Validation

Definitions

Verification:

Process of determining that a computational model accurately represents the underlying mathematical model and its solution.

\succ <u>Validation</u>:

Process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.

□ Overview of the V&V procedure proposed in the USA

- Verification
- Validation
- Documenting Relevant Phenomena

Overview of the V&V procedure proposed in the USA
Verification

> Validation

Documenting Relevant Phenomena

No specific formulas to predict a full-scale crash test!

Verification based on:

- Conservation of Mass and Energy
- Stability of Contact definitions / Element formulations

Overview of the V&V procedure proposed in the USA

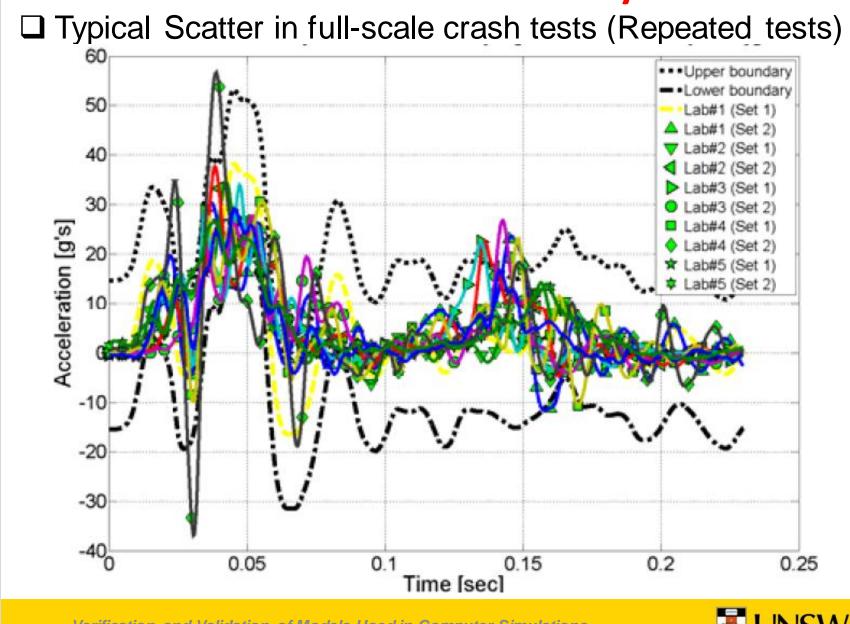
> Verification

Validation

Documenting Relevant Phenomena

Comparison of Experimental vs. Simulation data:

- Specific safety indexes used in barrier crash testing
- Acceleration and Rotation Speed <u>Qualitative</u> (comparison metrics)


Comparison metrics & acceptance criteria

		Acceptance Criteria	
& Geers	Magnitude Component (M _{SG})	$M_{SG} = \sqrt{\frac{\sum c_i^2}{\sum m_i^2}} - 1$	≤ 40%
Sprague & Geers	Phase Component (P _{SG})	$P_{SG} = \frac{1}{\pi} \cos^{-1} \frac{\sum c_i m_i}{\sqrt{\sum c_i^2 \sum m_i^2}}$	≤ 40%
A al error*)	Average (a)	$\bar{e}^r = \frac{\sum_{i=1}^n (m_i - c_i)/m_{max}}{n}$	≤ 5%
ANOVA (based on residual error*)	Standard Deviation	$\sigma^r = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (e^r - \bar{e}^r)^2}$	≤ 35%
(ba			

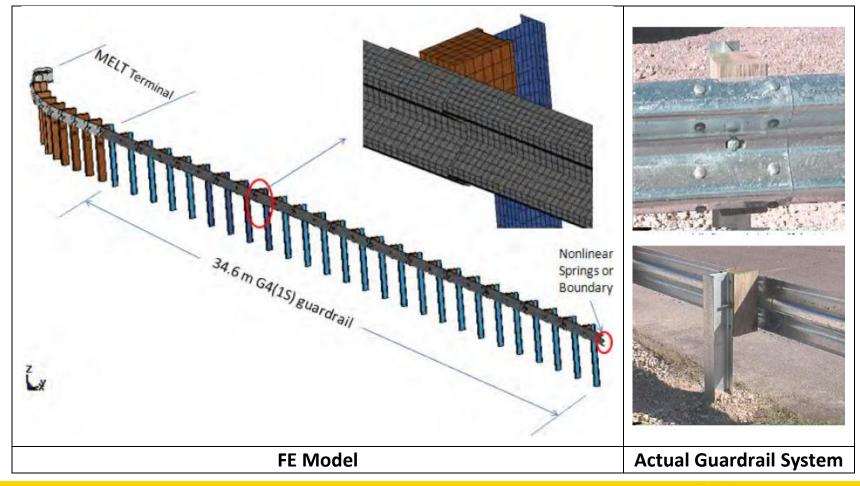
Acceptance criteria based on scatter of results from repeated full-scale crash tests

V&V PROCEDURES IN ROADSIDE SAFETY

Verification and Validation of Models Used in Computer Simulations of Roadside Barrier Crashes

12

VerificationValidation


V&V in Roadside Safety

Overview of the V&V procedure proposed in the USA

- Documenting Relevant Phenomena
- Others can use the model in the future
- PIRT table reports relevant physical phenomena the model has proven to reproduce

□ Most common guardrail system in USA – G1(1S)

□ Most common guardrail system in USA – G1(1S)

□ Steps followed:

- V&V of a baseline model (against an initial crash test)
- Simulations w/ modified model (kerb added) Assess predictive capacity of modified model (against a second crash test)

- □ V&V of baseline model
 - Verification

Energy & Mass

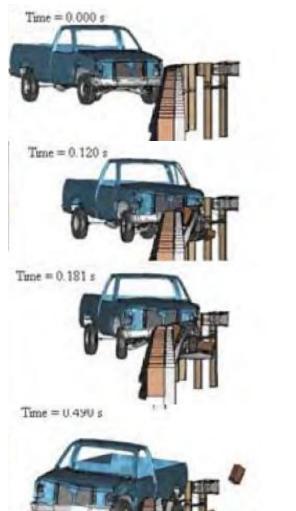
			Model Entity	Stage of Simulation	Verification Criteria	Quantity Value	Pass? (Y/N)
		Total Energy	Global	Throughout	\leq 10% Total Init. Energy @ t=0	1.3%	Y
		Hourglass Energy	Global	Termination	\leq 5% Total Init. Energy (a) t=0	0%	Y
				Termination	\leq 10% Total Internal Energy @ end	0%	Y
	antity		Specific Parts	Throughout	\leq 5% Total Init. Energy @ t=0	0%	Y
≥ ↓	ant	Added Mass	Global	Start	\leq 5% Total Mass @ t=0	0%	Y
	Qu			Throughout	\leq 10% Total Mass @ t=0	0%	Y
Ë I	ed		Specific Parts	Throughout	\leq 10% Mass of Part @ t=0	0%	Y
	V erified		Global (Moving Parts Only)	Throughout	\leq 5% Mass of Moving Parts @ t=0	0%	Y
L		Shooting Nodes?	Global	Throughout	Y/N	Ν	Y
		Solid Elements w/ Negative Volume?	Global	Throughout	Y/N	Ν	Y

- □ V&V of baseline model
 - > Verification

SE				
N N			Total Energy	
APPLICATION CAS			Hourglass Energy	
Ē		tity		
CA ⁻		Verified Quantity		
		ied	Added Mass	
ЧРР	Stability	Verif		(
	tal		Shooting Nodes?	
		K	Solid Elements w/	
				1

Model

		Model	Stage of	Verification	Quantity	Pass?
		Entity	Simulation	Criteria	Value	(Y/N)
	Total Energy	Global	Throughout	\leq 10% Total Init. Energy @ t=0	1.3%	Y
	Hourglass Energy	Global	Termination	\leq 5% Total Init. Energy @ t=0	0%	Y
			Termination	\leq 10% Total Internal Energy @ end	0%	Y
tity		Specific Parts	Throughout	\leq 5% Total Init. Energy @ t=0	0%	Y
Quantity	Added Mass	Global	Start	\leq 5% Total Mass @ t=0	0%	Y
nð			Throughout	\leq 10% Total Mass @ t=0	0%	Y
ed		Specific Parts	Throughout	\leq 10% Mass of Part @ t=0	0%	Y
Verified		Global (Moving Parts Only)	Throughout	\leq 5% Mass of Moving Parts @ t=0	0%	Y
	Shooting Nodes?	Global	Throughout	Y/N	N	Y
۲_	Solid Elements w/ Negative Volume?	Global	Throughout	Y/N	Ν	Y



17

□ V&V of **baseline** model

Verification

- Validation
 - o Qualitative

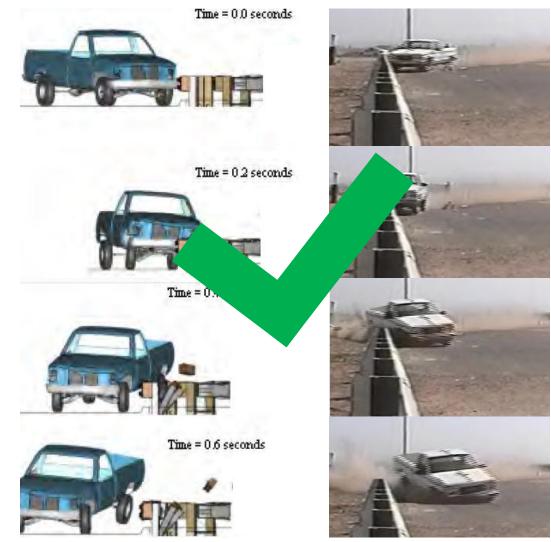
□ V&V of baseline model

> Verification

Validation

Qualitative \bigcirc

Quantitative \bigcirc


Single Changels	Sprague&Geers		ANOVA		Pass?
Single Channels —	M	P	Mean Residual	STD of Residual	
X Acceleration	21.5	33.3	0.02	0.34	Y
Y Acceleration	<u>43.9</u>	35.7	0.05	0.27	Ν
Z Acceleration	21.1	<u>43.0</u>	0.02	0.32	Ν
Roll Rate	35.3	32.7	0.02	0.27	Y
Pitch Rate	13.3	48.0	0.05	<u>0.36</u>	Ν
Yaw Rate	11.7	8.7	0.04	0.12	Y
Multichannel Weights	0.45 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2				
Weighted average	Sprague&Geers		ANOVA		Pass?
	M	P	Mean Residual	STD of Residual	
	22.9	25	0.03	0.24	Y

Verification and Validation of Models Used in Computer Simulations of Roadside Barrier Crashes

Average

□ Predictive capacity of **modified** model

Conclusions

- Quantitative V&V allows for a more reliable use of computer simulations in roadside safety
- Basis for approval of incremental hardware improvements through simulations only
 - Support regulators in taking approval decisions
 - > NO need for re-testing modified system
- □ Suggested implementation of V&V into simulation process:

Develop baseline model	Validate baseline	Modify baseline model	Simulate modified design	Evaluate simulation	Acceptable performance?
moder	model	model	aesign		

V&V Guidelines (NCHRP Report 179) available at: <u>http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w179.pdf</u>

Acknowledgments

□ V&V Guidelines were developed under the US National Cooperative Highway Research Program (NCHRP), Project No. 22-24.

Questions ?

